DF-Net: Unsupervised Joint Learning of Depth and Flow using Cross-Task Consistency

VIRGINIA

Yuliang Zou Virginia Tech

Zelun Luo Stanford University Jia-Bin Huang Virginia Tech

Overall Objective

$$L = L_{\text{photometric}} + \lambda_s L_{\text{smooth}} + \lambda_f L_{\text{forward-backward}} + \lambda_c L_{\text{cross}}$$

Cross-task consistency

- The synthesized rigid flow should be consistent with the estimated optical flow in valid regions

$$L_{\text{cross}} = \sum_{p \in V_{\text{depth}} \cap V_{\text{flow}}} ||F_{\text{rigid}}(p) - F_{\text{flow}}(p)||_{1}$$

Forward-backward consistency

- A pixel moves along forward-backward flow should stay at the same position
- Large disagreement indicates invalid regions (e.g., occlusions)
- Enforce the forward-backward consistency for valid regions

$$L = L_{\text{photometric}} + \lambda_s L_{\text{smooth}} + \lambda_f L_{\text{forward-backward}} + \lambda_c L_{\text{cross}}$$

$$L_{\text{forward-backward, flow}} = \sum_{p \in V_{\text{flow}}} ||F_{t \to t+1}(p) + F_{t+1 \to t}(p + F_{t \to t+1}(p))||_1$$

Brightness constancy

- A warped frame should be similar to the target frame

$$L_{\text{photometric}} = \sum_{p \in V} \rho(I_t(p), \bar{I}_t(p))$$

		KITTI 2012		KITTI 2015		
		Train	Test	Train	Train	Test
Method	Dataset	EPE	EPE	EPE	F1	F1
FlowNetC	C (S)	9.35	_	12.52	47.93%	-
SemiFlowGAN	C(S)/K(U)	7.16	_	16.02	38.77%	-
FlowNet2	C(S) + T(S)	4.09	-	10.06	$\boldsymbol{30.37\%}$	-
UnsupFlownet	C(U) + K(U)	11.3	9.9	_	<u>12</u> 0	_
DSTFlow	C(U)	16.98	<u>-</u>	24.30	52.00%	-
DSTFlow	K(U)	10.43	12.4	16.79	36.00%	39.00%
UnFlowC	SYN(U) + K(U)	3.78	4.5	8.80	28.94%	29.46%
Ours	SYN (U) + K (U)	3.54	4.4	8.98	$\boldsymbol{26.01\%}$	25.70%
UnFlowC-ft-kitti	SYN (U) + K (U) + K (S)	(2.13)	3.0	(3.67)	(17.78%)	24.20%
Ours-ft-kitti	SYN (U) + K (U) + K (S)	(1.75)	3.0	(2.85)	(13.47%)	22.82%